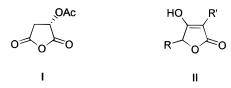
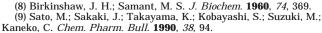
Regioselective Ring Opening of Malic Acid Anhydrides by Carbon Nucleophiles. **Application in the Synthesis of Chiral Tetronic Acids**


Christos A. Mitsos, Alexandros L. Zografos, and Olga Igglessi-Markopoulou*

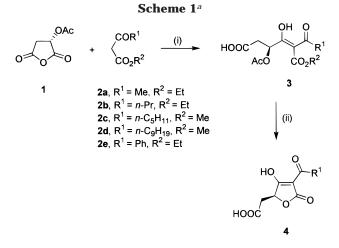
National Technical University of Athens, Department of Chemical Engineering, Laboratory of Organic Chemistry, Zografou Campus, Athens 157 73, Greece

ojmark@orfeas.chemeng.ntua.gr

Received March 28. 2000


S-Malic acid is an important chiral building block which has found wide application in the enantioselective synthesis of chiral compounds.¹ Manipulation of this polyfunctional synthon requires the selective protection of the different functionalities and the distinction of the two carboxyl groups present. The O-protected hydroxysuccinic anhydrides (I) derived from malic acid offer a unique way to achieve both these tasks. These anhydrides react regioselectively at the C-2 site with oxygen and nitrogen nucleophiles providing malic acid monoesters² and monoamides,³ respectively. However, no report has appeared concerning similar behavior toward carbon nucleophiles.

In the course of our studies on the synthesis of heterocyclic systems comprising a β -dicarbonyl moiety⁴ we required a facile route to tetronic acid derivatives (II). The appreciable number of tetronic acids found in nature⁵ and the antibiotic activity displayed by many of them⁶ has attracted the interest of many research groups on the synthesis of this class of heterocyclic compounds. Among the natural occurring tetronic acids a number of compounds bearing a 5-carboxymethyl substituent have been isolated as fungal metabolites, namely carlosic, carlic,⁷ and viridicatic acid.⁸ Although, several procedures for the preparation of these compounds have appeared in the literature, they require not readily available starting materials, as β -ketothioesters⁶ and 1,3-dioxin-4-ones,⁹ and comprise a final hydrolysis step in order to afford the free carboxyl functionality.


1999, 1, 1953.

- (5) Pattenden, G. Fortschr. Chem. Org. Naturst. 1978, 35, 133.
 (6) Booth, B. M.; Fox, C. M. J.; Ley, S. V. J. Chem. Soc., Perkin *Trans.* **1 1987**, 121, and references therein. (7) Clutterbuck, P. W.; Raistrick, H.; Reuter, F. *Biochem. J.* **1935**,
- 29 300

AcO HOOC

Figure 1.

^a Key: (i) NaH, THF; (ii) NaOH, H₂O, MeOH.

The use of malic acid anhydride as starting material for the preparation of 5-carboxymethyl substituted tetronic acids would overcome the time-consuming hydrolysis step. The basic framework of a 3-acyl-5-carboxymethvltetronic acid can be constructed through a regioselective ring opening of malic acid anhydride by the anion of an appropriate β -ketoester, as outlined in Figure 1.

To exploit this approach, at first we attempted the synthesis of racemic tetronic acids of this type. The requisite RS-malic acid anhydride (RS-1) was easily prepared from *RS*-malic acid upon heating at reflux with 3.5 equiv of acetyl chloride. This anhydride was found to react regioselectively at the C-2 site with anions of β -ketoesters (**2a**-**e**) to afford β -hydroxy- γ -acetoxybutenoates of type 3 (Scheme 1). The protocol used requires the reaction of 1 with 2 equiv of the anion of the appropriate β -ketoester, generated with sodium hydride. After acidification with 10% hydrochloric acid, intermediates 3 were obtained in an oily form containing small amounts of the corresponding β -ketoester, as evidenced from the ¹H NMR spectra. Deacetylation and subsequent cyclization of 3 was effected under basic hydrolytic conditions to provide the desired 3-acyl-5carboxymethyltetronic acids (4, R = Me, *n*-Pr, *n*-C₉H₁₉, Ph) in good overall yields (51–79% from RS-1).

Application of this methodology in the synthesis of 5-(S)-carboxymethyltetronic acids is straightforward utilizing S-malic acid anhydride (S-1).¹⁰ Thus, S-carlosic acid (S-4b) was obtained from S-1 and ethyl butyryl acetate (**2b**) in 70% yield (2 steps), $[\alpha]^{21}_{D}$ -125 (*c* 0.28, H₂O) [lit.⁶ $[\alpha]^{21}_{D}$ –138 (c 0.28, H₂O)]. Similarly, Sviridicatic acid (*S*-4c) was obtained from *S*-1 and methyl hexanoyl acetate (2c) in 62% yield: $[\alpha]^{21}_{546}$ -101 (c 1,

^{*} To whom correspondence should be addressed. Tel: +301 7723259, +301 7723074. Fax: +301 7723072.

⁽¹⁾ Coppola, G. M.; Schuster, H. F. a-Hydroxy Acids in Enantioselective Synthesis; VCH: Weinheim, 1997; Chapter 3.

 ⁽²⁾ Bajwa, J. S.; Miller, M. J. J. Org. Chem. 1983, 48, 1114.
 (3) Liesen, G. P.; Sukenik, C. N. J. Org. Chem. 1987, 52, 455.
 (4) Zografos, A. L.; Mitsos, C. A.; Igglessi-Markopoulou, O. Org. Lett.

⁽¹⁰⁾ Henrot, S.; Larchevêque, M.; Petit, Y. Synth. Commun. 1986, 16. 183.

 Table 1. Tetronic Acids Obtained with the Proposed Methodology

R ¹	β -ketoester	yield (%)
Me	2a	75
Me	2a	62
<i>n</i> -Pr	2b	72
<i>n</i> -Pr	2b	70
<i>n</i> -C ₅ H ₁₁	2 c	62
<i>n</i> -C ₉ H ₁₉	2d	51
Ph	2e	79
	Me Me <i>n</i> -Pr <i>n</i> -Pr <i>n</i> -C ₅ H ₁₁ <i>n</i> -C ₃ H ₁₉	Me 2a Me 2a <i>n</i> -Pr 2b <i>n</i> -Pr 2b <i>n</i> -C ₅ H ₁₁ 2c <i>n</i> -C ₉ H ₁₉ 2d

EtOH) [lit.⁹ $[\alpha]^{21}_{546}$ -105 (*c* 1, EtOH)]. Tetronic acids synthesized with the above methodology are summarized in Table 1.

In conclusion, the regioselectivity of the reaction of O-acetylmalic acid anhydride (1) with carbanions has been established. This anhydride represents a versatile derivative of malic acid where the selective activation and protection of the carboxyl groups are simultaneously achieved. The reaction of 1 with the anions of β -keto-esters leads to β -hydroxy- γ -acetoxybutenoates of type 3, which are useful intermediates for the synthesis of certain tetronic acid natural products.

Experimental Section

General Methods. All the commercial available starting materials were used without further purification. The β -ketoesters used were either purchased from Fluka or prepared by a literature procedure.¹¹ Commercially available THF and dichloromethane were dried prior to use by refluxing over sodium and phosphorus pentoxide, respectively. Melting points are uncorrected. Chemical shifts are quoted in ppm (t = triplet, dd = doublet of doublets, m = multiplet, br = broad).

General Procedure for the Preparation of 3-Acyl-5carboxymethyltetronic Acids. To a suspension of sodium hydride (10 mmol) in anhydrous THF (30 mL), chilled at 0 °C, is added dropwise the appropriate 2 (10 mmol) and, after stirring at 0 °C for 30 min, a clear solution results. A solution of 1 (5.0 mmol) in anhydrous THF (5 mL) is added at once. The mixture is stirred at 0 °C for 30 min, and after the addition of water (10 mL), the mixture is concentrated in a rotary evaporator. The aquatic residue is washed with ether (5 mL) and then acidified with 10% hydrochloric acid under cooling in an ice-water bath. The acidified mixture is extracted with dichloromethane, and the combined extracts dried over sodium sulfate and evaporated to afford the crude β -hydroxy- γ -acetoxybutenoate **3** in an oily form. A solution of crude 3 (~4 mmol) in methanol (2 mL) is chilled at 0 °C, and a 2 N NaOH solution (6 mL) is added dropwise. The solution is stirred at room temperature for 2-3 h and then acidified with 10% hydrochloric acid under cooling in an ice-water bath. The product 4 is either filtered off or extracted with ethyl acetate.

3-Acetyl-5-carboxymethyltetronic Acid (*RS***4a).** Starting from *RS***-1** (5.0 mmol, 0.79 g), the title compound was obtained as a white solid (0.75 g, 75%). Mp: 172-174 °C (lit.¹² mp 178-180 °C). ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.15 (3H, s), 2.20 (1H,

dd, J = 16, 9.2 Hz), 2.70 (1H, dd, J = 16, 3.4 Hz), 4.40 (1H, dd, J = 9.2, 3.4 Hz). ¹³C NMR (75 MHz, DMSO- d_6): δ 28.0, 37.4, 76.2, 95.3, 172.1, 174.7, 192.0, 194.5.

3-Acetyl-5-(*S***)-carboxymethyltetronic Acid (***S***-4a). Starting from** *S***-1 (5.0 mmol, 0.79 g), the title compound was obtained as a pale yellow solid (0.62 g, 62%). Mp: 183–184 °C (lit.¹³ mp 182–184 °C). [\alpha]^{21}_{D}: -107 (***c* **3.58, acetone) [lit.⁶ [\alpha]_D -36.4 (***c* **3.58, acetone)]. ¹H NMR (300 MHz, DMSO-***d***₆): \delta 2.36 (3H, s), 2.53 (1H, dd,** *J* **= 17, 7.3 Hz), 2.79 (1H, dd,** *J* **= 17, 3.4 Hz), 4.77 (1H, dd,** *J* **= 7.3, 3.4 Hz), 9.57 (2H, br).**

3-Butanoyl-5-carboxymethyltetronic Acid (*RS*-Carlosic Acid) (*RS*-4b). Starting from *RS*-1 (5.0 mmol, 0.79 g), the title compound was obtained as a beige solid (0.82 g, 72%). Mp: 177–178 °C (lit.¹³ mp 178–179 °C). ¹H NMR (300 MHz, DMSO-*d*₆): δ 0.86 (3H, t, *J* = 7.1 Hz), 1.44–1.60 (2H, m), 2.54 (1H, dd, *J* = 17, 7.6 Hz), 2.68–2.75 (2H, m), 2.83 (1H, dd, *J* = 17, 3.8 Hz), 9.62 (2H, br). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 13.7, 18.2, 36.2, 38.9, 76.0, 98.3, 170.9, 171.0, 192.7.

3-Butanoyl-5-(S)-carboxymethyltetronic Acid (S-Carlosic Acid) (S-4b). Starting from S-1 (2.3 mmol, 0.36 g), S-carlosic acid (S-4b) was obtained as a white solid (0.36 g, 70%). Mp: $176-177 \degree C$ (lit.⁹ mp $176.5-177.5 \degree C$). [α]²¹_D: -125 (c 0.28, H₂O) [lit.⁶ [α]²¹_D -138 (c 0.28, H₂O)]. ¹H NMR (300 MHz, DMSO- d_6): δ 0.86 (3H, t, J = 7.3 Hz), 1.44–1.58 (2H, m), 2.50 (1H, dd, J = 17, 7.8 Hz), 2.66–2.74 (2H, m), 2.81 (1H, dd, J = 17, 3.9 Hz), 4.77 (1H, dd, J = 7.8, 3.9 Hz), 7.72 (2H, br).

5-(S)-Carboxymethyl-3-hexanoyltetronic Acid (S-Viridicatic Acid) (S-4c). Starting from S-1 (10 mmol, 1.59 g), S-viridicatic acid was obtained as a pale yellow solid (1.58 g, 62%). Mp: 173–174 °C (lit.⁹ mp 172–173 °C). $[\alpha]_{546}^{21}$ –101 (*c* 1, EtOH) [lit.⁸ $[\alpha]_{546}^{21}$ –105 (*c* 1, EtOH)]. ¹H NMR (300 MHz, DMSO-*d*₆): δ 0.83 (3H, t, *J* = 6.8 Hz), 1.18–1.32 (4H, m), 1.44–1.56 (2H, m), 2.57 (1H, dd, *J* = 17, 7.3 Hz), 2.70–2.77 (2H, m), 2.82 (1H, dd, *J* = 17, 3.9 Hz), 4.85 (1H, dd, *J* = 7.3, 3.9 Hz), 7.21 (2H, br). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 13.8, 21.8, 24.5, 30.9, 36.1, 36.5, 76.0, 98.5, 170.5, 171.0, 192.6, 192.7.

5-Carboxymethyl-3-decanoyltetronic Acid (*RS***-4d)**. Starting from *RS***-1** (2.0 mmol, 0.32 g), the title compound was obtained as a pale yellow solid (0.32 g, 51%). Mp: 151–153 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 0.83 (3H, t, *J* = 6.8 Hz), 1.22 (12H, br), 1.45 (2H, m), 2.42 (1H, dd, *J* = 17, 8.3 Hz), 2.67 (2H, t, *J* = 7.3 Hz), 2.76 (1H, dd, *J* = 17, 3.9 Hz), 4.66 (1H, dd, *J* = 8.3, 3.9 Hz). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 13.9, 22.1, 24.8, 28.7, 28.8, 28.85, 28.9, 31.3, 36.3, 37.0, 76.0, 97.9, 171.2, 171.3, 192.9, 193.1. Anal. Calcd for C₁₆H₂₄O₆: C, 61.52; H, 7.74. Found: C, 61.42; H, 7.76.

3-Benzoyl-5-carboxymethyltetronic Acid (*RS*-4e). Starting from *RS*-1 (10 mmol, 1.59 g), the title compound was obtained as a beige solid (2.08 g, 79%). Mp: 165–167 °C. ¹H NMR (300 MHz, DMSO- d_6): δ 2.61 (1H, dd, J = 17, 7.6 Hz), 2.89 (1H, dd, J = 17, 3.5 Hz), 4.97 (1H, dd, J = 7.6, 3.5 Hz), 7.38–7.76 (5H, m). ¹³C NMR (75 MHz, DMSO- d_6): δ 36.4, 74.9, 98.6, 128.1, 129.2, 132.3, 137.9, 171.0, 171.1, 187.4, 187.8. Anal. Calcd for C₁₃H₁₀O₆: C, 59.55; H, 3.84. Found: C, 59.51; H, 3.90.

Acknowledgment. We thank the Research Committee of the National Technical University of Athens for a doctoral assistantship (C.A.M.).

JO0004660

⁽¹¹⁾ Oikawa, Y.; Yoshioka, T.; Sugano, K.; Yonemitsu, O. Organic Syntheses; Wiley: New York, 1990; Collect. Vol. VII, p 359.
(12) Svendsen, A.; Boll, P. M. J. Org. Chem. 1975, 40, 1927.

⁽¹³⁾ Bloomer, J. L.; Kappler, F. E. J. Chem. Soc., Perkin Trans. 1 1976, 1485.